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ABSTRACT 

The paper provides an engineering analysis approach for assessing reliability of NDE flaw detection using smaller number 

of demonstration data points. It explores dependence of probability of detection (POD), probability of false positive (POF), 

on contrast-to-noise ratio, and net decision threshold-to-noise ratio in a simulated data; and draws some generically 

applicable inferences to devise the approach. ASTM nondestructive evaluation standards provide requirements on signal-

to-noise ratio and/or contrast-to-noise ratio in order to provide reliable flaw detection and limit false positive calls. POD 

analysis of inspection test data results in an estimated flaw size, denoted by  𝑎90/95. This flaw size has 90% POD and 

minimum 95% confidence. POF is also estimated in the analysis. POD demonstration requires specimens with flaws of 

known size. In many situations, it is very expensive to produce the large number of flaws required for the POD analysis. 

In some situations, only real flaws can truly represent the flaws for demonstration. Real flaws of correct size and location 

in part configuration specimen may be difficult to produce, if not impossible. Here, an engineering analysis approach is 

devised using simulation to assess reliability of NDE technique when a limited number of flaws are available for 

demonstration. In this simulation, a technique is considered reliable, if it provides flaw detectability size equal to or better 

than the theoretical  𝑎90
𝑡ℎ used in simulation and also provides a POF less than or equal to a chosen value. The paper uses 

simulated signal response versus flaw size data to devise the approach. Linear correlation is used between the signal 

response data and flaw size. POD software mh1823 uses generalized linear model (GLM) in POD analysis after 

transforming the flaw size and signal response, if needed, using logarithm. Therefore, this approach is in agreement with 

the linear signal correlation used in mh1823. Using the POD analysis of data, generic conditions on contrast-to-noise ratio 

and net decision threshold-to-noise ratio are derived for reliable flaw detection. In order to assess technique reliability 

using the engineering approach, signal response-to-flaw size correlation about the flaw size of concern is needed. In 

addition, measurement of noise is also needed. If the technique meets the above requirements, assumption of linear signal-

to-flaw size correlation and conditions on noise, then the technique can be assessed using this analysis as it fits the 

underlying POD model used here. The approach is conservative and is designed to provide a larger flaw size compared to 

the POD approach. Such NDE technique assessment approach, although, not as rigorous as POD, can be cost effective if 

the larger flaw size can be tolerated. Typically, this is a situation for all quality control NDE inspections. Here, an NDE 

technique needs to be reliable and 𝑎90/95 is not estimated, but the assessed flaw size is assumed to be larger than the 

unknown a90 due to conservative factors or margins. Applicability of the approach for assessing reliability of flaw detection 

in x-ray radiography and 2D imaging in general is also explored. 

Keywords: probability of detection, probability of false positive, signal-to-noise ratio, contrast to noise ratio 

 

1. INTRODUCTION 

MIL-HDBK-18231 and associated mh18232 software cover two types of datasets. First type of dataset is signal response 

â (read as a-hat) versus flaw size “a”. The â (y-axis) versus “a” (x-axis) data may be transformed using logarithm function 

along appropriate axes, if needed, to create linear fit around the decision threshold level. A generalized linear model (GLM) 

is fitted to the transformed data for analysis. Here, noise data is taken separately to define noise distribution. Noise is same 

as signal response from part where there is no flaw. Noise data is used to determine false call rate or probability of false 

positive calls (POF).  

Second type of dataset is called hit-miss data, which contains flaw size and corresponding detection result i.e. hit or miss. 

Hit has numerical value of 1 and miss has numerical value of 0. Here, false call data is noted to determine POF using 

Clopper-Pearson binomial distribution function. Normally, POD increases with flaw size and POF decreases with flaw 

size. POF value shall be within certain limit to prevent adverse impact on cost and schedule. ASTM E 28623 also provides 

the hit-miss POD data analysis method that is consistent with MIL-HDBK-1823. 

https://ntrs.nasa.gov/search.jsp?R=20190001604 2020-05-06T07:22:01+00:00Z
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There are other approaches that are not covered by MIL-HDBK-1823. Point estimate method of verifying reliably 

detectable flaw size is given by Rummel4. Koshti5 provides an approach for optimizing the point estimate method. A curve 

can be fitted to the data as opposed to fitting a straight line using general linear model (GLM) used in MIL-HDBK-1823. 

The chosen curve shall be based on the physics model or based on demonstration on additional similar inspection data. 

For signal response type POD analysis, curves with a90/95 upper and lower bounds2 and POF2 as a function of decision 

threshold are very useful in optimizing decision threshold.  

In signal response POD model, a quantity that relates to detection of the flaw is needed. In X-ray radiography, observed 

anomaly image contrast from a flaw is the primary flaw detection parameter. A compound X-ray flaw size parameter that 

relates to flaw image contrast can be derived from a physics based model (Koshti6-9). In infrared flash thermography, 

normalized image and temperature contrast of flaw can be used as signal response for POD analysis (Koshti10-16). 

Engineering analysis approaches are not considered to be statistical analysis in complying with MIL-HDBK-1823 or point 

estimate method. Since they do not meet all the necessary requirements for statistical analysis, they may use some 

conservative margin (Koshti17) to the POD results from a similar inspection case. An engineering analysis approach for 

assessment of dye penetrant crack detectability in external corners using crack detection data from surface flaws is 

provided by Koshti18. Another example of engineering analysis, provided by Koshti19, is estimating reliably detectable 

flaw size for NDE methods, such as eddy current testing, that use technique calibration. Here, decision threshold level 

versus a90/95 curves are used for transferring calibration sensitivity established on electro-discharge machined (EDM) 

notches for detection of cracks. In another engineering analysis example, Koshti20 provides eddy current crack detection 

capability assessment approach using crack specimens with different electrical conductivity. Engineering approaches for 

flaw size assessment shall be approved by responsible engineering board. Koshti21 validates the approach given in this 

paper using Monte Carlo simulation of sample data. Koshti22 develops NDE flaw estimation using smaller number of hit-

miss data-points. The approach is validated using Monte Carlo sampling. Although, the approach is developed using 

simulation, the approach probably could be developed based on theory of statistics. 

 

2. SIMULATION APPROACH 

This approach is based on hypothesis that simulated data used in 𝑎̂ versus “a” curve-fit POD or 𝑎̂ versus “a” mh1823 POD 

analysis can be used to devise necessary conditions for engineering analysis for assessment of NDE technique reliability. 

Therefore, if POD methods are used to determinate POD curves, perform noise analysis, choose decision threshold, and 

perform POF analysis, then this information can be used to devise the necessary conditions for the engineering analysis. 

The following linear signal response versus flaw size model is used. Signal response 𝑎̂ relates to flaw size “a” as follows. 

 𝑎̂ = 𝛽1𝑎 + 𝛽0 +  𝛿, (1) 

where, 𝛽0 and 𝛽1are constants. Although a linear relationship is chosen, other relationships as given in MIL-HDBK-1823 

also apply. Noise δ is assumed to have Normal distribution with constant standard deviation σ. First, a symmetrical POD 

function curve based on error function (erf) is chosen. This is given by cumulative density distribution of a probability 

density function, which is chosen to be a Normal distribution. This meets the key assumption that POD increases with 

flaw size. Probability density function (PDF), in the form of Normal distribution, is given by, 

 𝑓(𝑎) =
1

𝜎∗√2𝜋
𝑒

−
(𝑎−𝜇)2

2𝜎∗2 . (2) 

POD function is given by cumulative density distribution function (CDF) of the Normal distribution function PDF. It is 

given by,  

 𝑔(𝑎, 𝜇, 𝜎∗ ) =  
1

2
[1 + 𝑒𝑟𝑓 (

𝑎−𝜇

𝜎∗√2
)], (3) 

where, 𝜇 is mean of the PDF and CDF functions at a given decision threshold. 𝜎 and 𝜎* are standard deviations of noise δ 

and for PDF (or CDF) function at a given decision threshold respectively. 90% POD is given by following expression, 

0.9 =  𝑔(1.2815, 0, 1).  Following CDF expression from Matlab may be used. 

 

 𝑔(𝑎) = 0.5[1 + 𝑒𝑟𝑓(𝐶1𝑎 − 𝐶2)], (4) 

where,  

 𝐶1 = 1 𝜎∗√2⁄ , and  (5) 
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 𝐶2 = 𝜇 𝜎∗√2⁄ . (6) 

 

From Eq. 5, we can calculate the standard deviation in POD model as, 

 

 𝜎∗ = √2𝐶1. (7) 

From Eq. 6, mean used is calculated as, 

 𝜇 = 𝐶2𝜎∗√2. (8) 

 

Following signal response model was used to generate data. 

 

 𝑎̂ = 10𝑎 + 5 +  𝛿. (9) 

 

Typically, σ value was chosen to be 4. Although, the value was changed in some plots to understand how value of σ affects 

the other quantities explored in this paper. Typically, 500 data points were used but in some plots the number was varied. 

A straight line is fitted through the data. Here, the lowest line or the lower cumulative 90/95 bound is same as the decision 

threshold. Thus, x-coordinate and y-coordinate give 𝑎90/95  flaw size and the corresponding decision threshold 

respectively.  

 

 
Fig. 1: Signal response versus flaw size. 

 

Data prediction and fit confidence bounds come closer in the middle of flaw size range. Establishing POD and confidence 

bounds is not covered here. It should follow the statistical POD methods mentioned above. Apparent standard deviation 

of the POD model can be estimated from the signal response range between 90/95 bounds by, 

 

 𝜎∗ = 𝑎̂𝛥90/95/(1.285 × 2), (10) 

 

where 𝑎̂𝛥90/95 =  difference between the cumulative upper and lower 90/95 bounds. See Fig. 1. Ratio of standard 

deviation of 90/95 fit of POD Model to standard deviation of noise is also called ratio of standard deviation of noise here. 

It is denoted by 𝑅𝜎 and is given by, 

 

 𝑅𝜎 = 𝜎∗/𝜎. (11) 

 

The noise ratio 𝑅𝜎 is plotted below. It is between 1.06 to 1.2. 
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Fig. 2: Standard deviation of noise ratio versus flaw size. 

 

Noise ratio 𝑅𝜎 is dependent on number of data points. The above values are for 500 data points. Since the values for ends 

in above plot are higher, we can choose those as conservative estimates. We can find dependency of the standard deviation 

of noise ratio of beginning data point on number of data points “n” as given below. 

 
Fig. 3: Standard deviation ratio versus data points. 

 

The upper curve is more conservative. Our previous calculation of ratio agrees with these curves. Fit equation for the upper 

curve is given below. 

 𝑅𝜎 = 3.313 × n −0.1674 . (12) 

 

Notice that the noise ratio 𝑅𝜎 range is from 1 for over 1000 data points to 2.25 for 10 equally distributed data points around 

target flaw size. Conservatively, we can take 2.25 as the worst case value in this paper. If only noise measurements are 

made, then there is no flaw size spacing. Therefore, use of only noise data points assumes that there is a linear correlation 

between flaw size and signal response; and noise is independent of flaw size. The noise ratio 𝑅𝜎 is the only conservative 

factor in this empirical approach. Therefore, user may choose a different value based on number of data points or choose 

a value based on similarity to other POD and noise studies. Probability of false positive is calculated using a probability 

density distribution. As mentioned earlier, we use Normal distribution with mean of β0 and standard deviation of 𝜎∗. POF 

is calculated using the corresponding cumulative distribution as follows,  

 𝑃𝑂𝐹 = 1 − 𝑐𝑑𝑓(𝑎̂𝑡ℎ𝑟), (13) 
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where 𝑎̂𝑡ℎ𝑟 = signal decision threshold level. 

Next we compute various signal-to-noise and decision threshold-to-noise ratios. If noise is measured as standard 

deviation, 𝑛𝜎  then it is given by, 

 𝑛𝜎 = 𝜎∗. (14) 

 

If noise is measured as 90% percentile or as cumulative noise, 

 

 𝑛90 = 1.285 𝜎∗. (15) 

 

Average signal response is given by  𝑎̂𝑚. This would require multiple measurements at a given target flaw size and average 

of these measurements can be taken as  𝑎̂𝑚 for flaw size 𝑎𝑚. Curve for signal response  𝑎̂𝑚 versus flaw size am is shown 

by fit curve in Fig. 1. Noise can be measured as standard deviation of these measurements but the flaw size must be same. 

Else, it is recommended to get noise measurements in the vicinity of a demonstration test flaw to be detected. Noise 

measurements in region outside flaw area provide mean as β0 and standard deviation as σ. β0 is considered to be baseline 

signal response and not noise.  Contrast is given by, 

 

 𝑐 =  𝑎̂𝑚 − 𝛽0. (16) 

 

Decision threshold 𝑎̂𝑡ℎ𝑟 = 𝑎̂90/95. See Fig. 1. Net decision threshold is given by, 

 

 𝑎̂𝑡ℎ𝑟_𝑛𝑒𝑡 = 𝑎̂𝑡ℎ𝑟 − 𝛽0. (17) 

 

Using the assumed POD model (Eq. (3)), a condition for POD > 90% based on relative contrast ratio 𝐶𝑟𝑒𝑙𝑁𝑅,  is given 

below.  

 

 𝐶𝑟𝑒𝑙𝑁𝑅 = ((𝑎̂𝑚 − 𝛽0) − (𝑎̂𝑡ℎ𝑟 − 𝛽0)) /𝜎∗  ≥  1.285. (18) 

 

If average signal from a certain size flaw and noise meet the above condition, termed merit ratio Condition 1, then that 

flaw can be detected reliably if POF is acceptable. Condition 1 is shown below in Fig. 4. 

 

 
Fig. 4: Probability of detection versus relative contrast ratio. 

 

Further noise analysis is required for estimating POF. First, we plot ratios with cumulative noise and their relationship 

with POF is calculated using Eq. (13). 
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Fig. 5: Probability of false positive versus noise ratios. 

 

In Fig. 5 the left plot was computed for noise standard deviation value of 2 units and right was computed for noise standard 

deviation value of 4 units. These curves are not invariant with standard deviation. Next, we plot curves with ratios to 

standard deviation of noise. 

 

 
Fig. 6: Probability of false positive versus noise ratios. 

 

In Fig. 6, the left plot was computed for noise standard deviation of 2 and right was computed for noise standard deviation 

of 4.  Contrast and net threshold ratios with standard deviation of noise seem to have less variation with standard deviation 

than corresponding curves in Fig. 6. Net threshold to standard deviation of noise directly correlates to POF (Eq. (13)) and 

will be used in further analysis. Following figure shows these two ratios versus POF. 

 

   
Fig. 7: Net threshold-to-standard deviation of noise versus probability of false positive. 
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In Fig. 7, the left figure was computed for noise standard deviation of 2 and right was computed for noise standard deviation 

of 4. We assume that POF = 0.1% is reasonable. Later, we will also use 1% POF. The corresponding ratios are annotated 

in above figures. Given few points of noise data with standard deviation σ, we need to compute minimum contrast-to-

noise ratio, minimum threshold-to-noise ratio and minimum contrast-to-net threshold ratio. Standard deviation of noise 

for the 90/95 bounds is given by, 

 𝜎∗ =  𝑅𝜎𝜎. (19) 

 

Conservative value for the standard deviation ratio can be taken as 2.25 corresponding to n = 10. 

 

 𝑅𝜎 = 2.25. (20) 

 

From Fig. 6, contrast-to-standard deviation of noise ratio (CNR) is calculated as follows,  

 

 𝐶𝑁𝑅 = (𝑎̂𝑚 − 𝛽0)/𝜎 =  𝑅𝜎 × 4.67 = 2.25 × 4.67 = 10.5. (21) 

 

Merit ratio Condition 2A: Contrast-to-standard deviation of noise ratio, CNR ≥ 10.5. From Fig. 7, Net threshold-to-standard 

deviation of noise (TNR) is computed as follows, 

 

 𝑇𝑁𝑅 = (𝑎̂𝑡ℎ𝑟 − 𝛽0)/𝜎 =  𝑅𝜎 × 3.4 = 2.25 × 3.4 = 7.65. (22) 

 

Merit ratio Condition3A: Net threshold-to-standard deviation of noise, 𝑇𝑁𝑅 ≥ 7.65. We use net noise i.e. noise about the 

baseline. An approximate way of calculating 99 percentile net noise in Normal distribution is, 

 

 𝑛99𝑛𝑒𝑡 = 2.36 × 𝑅𝜎𝜎. (23) 

 

Therefore, contrast-to-net noise ratio is given by, 

 

 (𝑎̂𝑚 − 𝛽0)/𝑛99𝑛𝑒𝑡 =  4.45. (24) 

 

Merit ratio Condition 2B: Contrast-to-net noise ratio ≥ 4.45. Also net threshold-to-net noise ratio is given by, 

 

 (𝑎̂𝑡ℎ − 𝛽0)/𝑛99𝑛𝑒𝑡 = 3.24  (25) 

 

Merit ratio Condition 3B: Net threshold-to-net noise ≥ 3.24. 

 

We can take ratio of the above numbers and plot contrast-to-net threshold (CTR) as given below. 

 

  
Fig. 8: Contrast to net threshold ratio versus probability of false positive. 

 

Contrast to net threshold ratio is given by, 



8 

 

Ajay M. Koshti, NASA Johnson Space Center, January 2019 8 

 𝐶𝑇𝑅 = 𝐶𝑁𝑅 𝑇𝑁𝑅⁄ = (𝑎̂𝑚 − 𝛽0) (𝑎̂𝑡ℎ𝑟 − 𝛽0)⁄ . (26) 

 

Merit ratio Condition 4: Contrast-to-net threshold ratio (CTR) should be approximately ≥ 1.37 for 1% POF. Threshold 

shall be set to 71% of the average flaws size amplitude. Lower decision threshold is better but conditions on contrast and 

threshold-to-noise ratios values shall also be met. This condition may have lower ratios as we simply took ratio of CNR 

and TNR to establish an approximate value21.  

 

Condition 1 (Eq. (18)) is an assumption of The POD model and is used to set the decision threshold values. It uses the 

assumed value of noise ratio. Accuracy of the 𝑎̂𝑚 will depend upon number of flaw responses averaged. Noise ratio of 

2.25 was assumed to be good for 10 flaws. Condition 1 is used to determine decision threshold with assumed value of 

noise ratio for a chosen sample size for flaws. It sets the values of CNR, TNR and CTR. 

Condition 2 on CNR is necessary to ensure that Conditions 3 and 4 would be met. CNR primarily influences POD. See 

Fig. 4. 

Condition 3 on TNR primarily influences POF. See Fig. 7. 

Condition 4 on CTR influences both POD and POF.  

 

It is postulated that in addition to affirming 𝑎̂ versus a linearity with constant noise, when the three Conditions, i.e. 2, 3, 

and 4, as given in Table 1 are met, then the instance of flaw detection is considered to be reliable detection. 

 

Conditions 2, 3, and 4 can be further validated through Monte Carlo simulation21. Koshti21 provides refinement of Table 

1 conditions by lowering the merit ratio values by using lower 𝑅𝜎 noise ratio and providing minimum required values for 

the CTR. 

 

These engineering rule of thumb or cook-book conditions can be used, if conventional POD analysis could not be 

performed. The same analysis is performed for POF = 1%. Results of POF values of 0.1% and 1% are summarized below.  

 

Table 1: Conditions for reliable flaw detection, noise ratio = 2.25 

 

Condition Description Abbreviation POF = 0.1% POF = 1% Change 

1 Difference in contrast and net threshold normalized 

to standard deviation of 90/95 bounds,  

Eq. (18) 

CrelNR ≥1.285 ≥1.285 0 

2A Contrast-to-standard deviation of noise ratio, Eq. 

(21) 

CNR ≥ 10.5 ≥ 8.66 1.845 

2B Contrast-to-net noise ratio, Eq. (24) CNR ≥ 4.45 ≥ 3.67 0.78 

3A Net threshold-to-standard deviation of noise, Eq. 

(22) 

TNR ≥ 7.65 ≥ 5.76 1.89 

3B Net threshold-to-net noise, Eq. (25) TNR ≥ 3.24 ≥ 2.44 0.8 

4 Ratio of the contrast-to-net threshold ratio, Eq. (26) CTR ~1.37 ~1.5 -0.13 

 

Last column gives difference between the columns 3 and 4. Higher POF of 1% allows lower merit ratios almost by 1 unit 

for ratios based on net noise and by 2 units for ratios based on standard deviation of noise. CTR is increased by 9% as POF 

is increased to 1%. Therefore, greater separation is needed between the indication contrast and decision threshold for POF 

of 1%. This is understandable as overall merit ratios for POF of 1% are lower. 

 

Minimum signal-to-noise ratio (equivalent to contrast-to-net noise ratio in Table 1) of 3 is commonly used, which is in 

agreement with numbers given in Condition 2B. For expensive hardware, all indications, i.e. true positive or false positive, 

are further evaluated using another NDE method. Therefore, POF of 1% may be economically viable. The above analysis 

is applicable for single-hit detection such as in ultrasonic testing using only A-scan display or eddy current testing using 

only impedance plane display.  
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3. APPROACH FOR ASSESSING TECHNIQUE RELIABILITY IN X-RAY RADIOGRAPHY 

Only volumetric flaws will be considered here. Detection of tight cracks (Koshti6-9) is excluded in this analysis. Here, we 

will only consider a few measured metrics from the above analysis and other factors such as resolution and contrast 

sensitivity. Correlation of indication shape and size with corresponding flaw shape and size is not considered here. Other 

factors such as scatter radiation, x-ray reflection at grazing angles (Koshti8) and beam hardening will not be addressed. 

When inspection results are presented in a C-scan or 2D image, flaw image size i.e. length and width also affect POD and 

POF. 3D image data obtained in x-ray Computed Tomography (CT) can be evaluated as a 2D slice image. If smallest or 

target flaw size to be detected is mapped in a grid or cluster of 3 by 3 (3 x 3) resolution pixels, then the above requirements 

need to be applied to the cluster of 3 x 3 resolution pixels. Here, each side of the square pixel is equal to the estimated 

resolution or total unsharpness per ASTM E2698. 

 

Consider x-ray digital radiography (DR) with rigid panel. Assume that the linear flaw response model is applicable. In 

digital radiography, typically, minimum contrast-to-noise ratio of 2.5 is needed in the relevant image quality indicator 

(IQI) hole per ASTM E2698–10, para. 10.19.3.2. Here, flaw size, that is to be reliably detected, is same as the relevant 

penetrameter hole size. If this analysis is used for qualification, then the noise level should be about same between the 

qualification testing and actual inspection. If probability of detecting a single pixel size flaw is 𝑃𝑂𝐷𝑖 , then probability of 

flaw detection in (3x3) cluster, PODm is given by, 

 

 𝑃𝑂𝐷𝑚 = 1 −  (1 − 𝑃𝑂𝐷𝑖)𝑁, (27) 

  

where, PODm = POD for the pixel cluster and 𝑃𝑂𝐷𝑖  = POD for individual pixel. N = number of pixels in the cluster, i.e. 9 

in this case. Note that above equation is also valid for linear indication of a flaw. The above equation assumes that the 

signal is independent of flaw size or modulation transfer function (MTF) of the cluster is 1. This assumption is valid if we 

assume that the signal registered by each pixel is about same as average signal of the cluster of 3 x 3 pixels. Thus, if 

𝑃𝑂𝐷𝑖 = 23%, then POD of 3 x 3 cluster 𝑃𝑂𝐷𝑚 = 90% using Eq. (27). However, 𝑃𝑂𝐷𝑖  cannot be lower than 50%. If 𝑃𝑂𝐷𝑖  

< 50%, decision threshold is set above the average contrast, which is wrong. It is assumed that the net threshold shall not 

exceed the average contrast. With this assumption, the limiting case of net threshold is when threshold is equal to average 

contrast. Here, 𝑃𝑂𝐷𝑖  of individual pixel is 50% and for 3 x 3 cluster of resolution size pixels, 𝑃𝑂𝐷𝑚 = 99.8% using Eq. 

(27). This value meets the minimum 0.9 requirement for POD. The following calculation used noise standard deviation 

value of 4 units.  

  
Fig. 9: Contrast and net threshold-to-standard deviation of fit noise versus probability of false positive. 

 

In Fig. 9, the average contrast and threshold are equal. Therefore, the corresponding graphs are coincident with each other 

in the above plot. Note that POF is 50% for contrast-to-noise-ratio of 0. Level of typical contrast sensitivity (CS) in digital 

radiography is ~1% or 2%. Contrast sensitivity is the minimum thickness change that can create perceptible image contrast 

and directly relates to detection of void type flaws. It is always measured in acreage area. It is assumed that certain contrast 
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sensitivity is needed in a cluster of 3 x 3 pixels of size equal to the resolution, which may be modulated to modulation 

transfer function (MTF) value of, for example, 80%. Therefore, contrast sensitivity needed on void indication will be 

higher, 

 𝐶𝑆3𝑥3 = 𝐶𝑆/𝑀𝑇𝐹3𝑥3 = 2/0.8  = 2.5%. (28) 

See Fig. 10. 

 
Fig. 10: Boundary of image of round void or hole of IQI and 3 x 3 cluster of resolution size pixels. 

 

The contrast sensitivity is like 99 percentile noise. For Normal noise distribution, 

 

 𝑛99 = 2.36𝜎. (29) 

 

Therefore, standard deviation of noise in terms of percent thickness t is, 

 

 100 𝜎 𝑡⁄ =
𝐶𝑆3𝑥3%

2.36
 = 

2.5%

2.36
=1.06%.  (30) 

 

ASTM E2737 uses a value of 2.5 instead of 2.36 with a similar approach. Therefore, minimum contrast sensitivity at void 

needed to meet contrast-to-noise ratio of 2.5 is given by,   

 

 𝐶𝑆𝑣𝑜𝑖𝑑 =
𝐶𝑁𝑅×𝐶𝑆

(2.36𝑀𝑇𝐹3𝑥3)
=

2.5×2%

2.36×0.8
= 2.65%. (31) 

 

The above equation implies that, given CS = 2%, contrast sensitivity for detection of void needs to be raised to 2.65%. 

Estimated resolution or total unsharpness Ulm per ASTM E2698 is given by, 

 

 𝑈𝑙𝑚 =
1

𝜈
√(𝑈𝑔)

3
+ (1.6 𝑆𝑅𝑏)3

3

 and, (32) 

 𝑈𝑔 = (𝜈 − 1)ø, (33) 

 

where Ug is geometric unsharpness. ν is the largest geometric magnification present in the image which happens at 

maximum distance of point on object from detector. Ø is the x-ray source focal spot size per ASTM E1165 and the detector 

basic resolution SRb is calculated using method specified in ASTM E2597. Thus, the flaw is mapped in 3Ulm x 3Ulm. See 

Fig. 10. The assumption of minimum 80% MTF would be valid for this flaw size. Thus, for digital radiography, a void 

with minimum thickness 2.65% of the total thickness and a size of 3Ulm x 3Ulm would be detected with 𝑃𝑂𝐷𝑖𝑚 as previously 

calculated to be 99.8%. Let us calculate the POF of the cluster. 

 

A point of 15.68% POF (net threshold-to-standard deviation of noise ratio = 1.1) is noted on the plot and is chosen for 

analysis. This point gives with 𝑃𝑂𝐷𝑖 = 50% and as previously calculated 𝑃𝑂𝐷𝑚= 99.8%. This point was chosen so that 

contrast-to-standard deviation of noise ratio (CNR) is 2.5 when decision threshold is same as average contrast.  

 

 𝐶𝑁𝑅 = (𝑎̂𝑡ℎ𝑟 − 𝛽0)/𝜎 =  2.25 × 1.1 = 2.5. (34) 

 

For this point, the POF for 3 x 3 resolution size pixel grid is given by 𝑃𝑂𝐹𝑚 , 

 

 𝑃𝑂𝐹𝑚 = 𝑃𝑂𝐹𝑖
𝑁 = 0.15689 = ~0%, (35) 
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where 𝑃𝑂𝐹𝑚 = POF for pixel cluster and 𝑃𝑂𝐹𝑖 = POF for individual pixels. N = number of pixels in a cluster, i.e. 9 in this 

case. POF for a cluster of 3 x 3 resolution size pixel cluster is negligible. Note that above equation is also valid for a linear 

indication of a flaw. ASTM E27367 recommends minimum seven effective pixels covering the longest dimension of defect. 

The above analysis assumes a decision threshold based flaw detection where decision threshold is same as average contrast. 

This is good for automated flaw detection. However, for visual flaw detection, detection criteria is simply visible contrast 

from the noise.  

 
Fig. 11: Signal and noise at CNR = 2.5. 

 

Fig. 11 shows Normal probability density distributions for signal and noise for CNR = 2.5. Standard deviation for predicted 

signal response is higher. See Eq. 19. For visual detection, the decision threshold is likely to be between the crossing of 

the two distributions i.e. at signal response of 6.37 units in Fig. 11 and the average signal response is 7.5 units. Here, we 

consider the worst POD case of visual flaw detection with decision threshold at the crossing point i.e., athr = 6.37 units. 

Threshold at crossing point provides a false call rate of 8.5% and POD of 69.2% for a single pixel using Eq. (4) and (13) 

respectively. CNR = 2.5 is measured in 3 x 3 resolution pixel grid. Therefore, using Eq. (27), for 9 pixels, the POD is 

96.4%. This POD is lower than 99.8% which was previously calculated for decision threshold at average contrast level. 

But visually detected flaw size is smaller than that detected by using decision threshold as average signal response of a 

target flaw. Using Eq. (35), POF is ~0 for the decision threshold level at the crossing point. Thus, for visual detection also, 

the detection for CNR = 2.5 is reliable. 

 

 
Fig. 12: Simulated CNR = 10 in left image and CNR = 2.5 in right image. One 3 x 3 cluster indication in top left and two 7 x 1 linear 

indications. 

 

Fig. 12 shows simulated images for 3 x 3 pixel cluster and two 7 x 1 linear indications with CNR = 10 and CNR = 2.5. The 

images confirm that the indications are visually detectable at CNR = 2.5. As expected, reliability of flaw detection in 2D 

imaging or multi-hit detection is much higher compared to that in single-hit detection using real time A-scan signal for the 

same contrast-to-noise ratio. Typically, in digital radiography, using rigid detector array, detector basic resolution SRb is 

related to the detector pixel size by, 

 𝑆𝑅𝑏 ≅  1.3 𝑥 𝑑, (36) 
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where, d = detector pixel size. Therefore, using Eq. 31, the minimum Ulm = 1.28 x d, which is approximately same as SRb. 

Typically, a pore is round with lateral dimension same as pore thickness. Diameter of pore is 1.414 times the 3 x 3 pixel 

grid width. This is illustrated in Fig. 10. The figure shows a circle representing the pore edge and the inscribed square box 

accommodates a grid of 3 x 3 resolution size pixels. Since contrast sensitivity, CS is a measure of noise-to-signal ratio, 

signal-to-noise ratio in acreage can be calculated as, 

 

 𝑆𝑁𝑅 = 100 × 2.36/𝐶𝑆 (37) 

 

ASTM E2737 uses a value of 2.5 instead of 2.36. 

 

 𝑆𝑁𝑅 ≥ 100 × 2.5/𝐶𝑆 (38) 

 

Thus, using Eq. (38) minimum SNR in acreage is calculated as 125 for CS of 2% and 250 for CS of 1%. In para. 10.19.3.4, 

ASTM E2698 states, if the CNR of the IQI is not accessible, alternatively the signal-to-noise ratio (SNR) shall be measured 

in an area of homogeneous gray level in the unprocessed image. The SNR shall exceed 130 for 2 % contrast sensitivity and 

exceed 250 for 1 % contrast sensitivity. 

 

Thus, diameter of round pore that is reliably detected is 3 x 1.414 Ulm = 4.2Ulm. Using Eq. (31), maximum thickness of 

material that can be inspected using contrast sensitivity of 2% would be, 

 

 𝑡𝑚𝑎𝑥 = (100 × 4.2 × 𝑈𝑙𝑚) 𝐶𝑆𝑣𝑜𝑖𝑑⁄ .   = 4.2 x 100 x Ulm. /2.65 = 160 Ulm.  (39) 

 

Normally, parts are much thinner. Thus, for detection of round pores, flaw detectability is controlled by the lateral 

dimension of pore, not by its thickness. For resolution Ulm of 0.002”, detectable pore diameter is 0.0084”. Maximum 

material thickness is 0.32” for this pore, provided Ulm is maintained at this thickness. 

 
Table 2: Conditions for reliably detecting 4.2 x Ulm diameter void with minimum 2.65% thickness. 

 

Condition Description  

1A Contrast-to-standard deviation of noise ratio on void  ≥ 2.5 

1B Signal-to-standard deviation of noise in acreage ≥ 130 

2 Contrast sensitivity ≤ 2% 

 

Conditions 1A and 1B are redundant to each other. The above model is also applicable to detection of round inclusions. 

Signal response is assumed to be linear with material density difference between a flaw and surrounding homogeneous 

material in x-ray digital radiography including rigid panel digital radiography (DR), flexible phosphor plate computed 

radiography (CR) and computed tomography (CT). The contrast sensitivity is inversely proportional to density 

difference 𝛥𝜌 as,  

 𝐶𝑆𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 ≅ 𝐶𝑆𝑣𝑜𝑖𝑑
𝛥𝜌𝑣𝑜𝑖𝑑

𝛥𝜌𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛
. (40) 

 

Note that for void or gas porosity, density difference is between the part material and air (or gas); and for inclusion it is 

between inclusion material and part material. If x-ray film is digitized, then above analysis is valid, provided transformed 

flaw response is linear with thickness change and noise is constant. Eq. (32) is applicable for film radiography, if film SRb 

is measured. Normally, one may assess the SRb qualitatively evaluating film radiograph of line pair gage. This value will 

not be as accurate. Assuming film SRb > 0 in Eq. (32), we get following requirement for film radiography, 

 

 𝑈𝑙𝑚 >
𝑈𝑔

𝜈
. (41) 

 

Similarly, for the volumetric flaw of size a, we have following requirement, 

 

 𝑎
𝑈𝑙𝑚

⁄ > 4.2. (42) 

 

Using, Eq. (40) in Eq. (41), for the volumetric flaw of size a, we also have the following requirement, 
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 𝑎𝜈
𝑈𝑔

⁄ > 4.2. (43) 

Resolution Ulm is applicable to the 2D imaging in radiography and it is assumed to be measured where flaws can occur 

and the chosen location is the worst location from flaw detectability point of view. 

 

In cone beam x-ray CT using rigid panel detectors, resolution can be measured from part edge response, line pair gage on 

or inside a simulated part, or by using a simulated part with rows of holes with different sizes. Simulated parts with known 

flaws are called representative quality indicator (RQI). ASTM E1817 provides requirements for use of RQI. We would 

assume that x-ray CT data is analyzed as 2D slice images. Detection of flaws in multiple neighboring parallel slices passing 

through the anomaly indication increases POD. We have an equation for POD that is similar to Eq. (27). Here, P1, P2 …. Pi 

are PODs in each slice where flaw is detected. Here, i is number of independent parallel slices detecting the anomaly. The 

slice thickness is assumed to be at least equal to the local resolution at flaw location. The composite POD of detecting 

flaws in multiple slices is higher than that in each slice. The composite POD is given by, 

 

 𝑃𝑂𝐷𝑚 = 1 − (1 − 𝑃𝑂𝐷1)(1 − 𝑃𝑂𝐷2) … . . (1 − 𝑃𝑂𝐷𝑖). (44) 

 

Eq. (44) is also the generic equation for multi-point POD. Detection of flaw in multiple slices reduces POF. We have an 

equation for POF that is similar to Eq. (35). The composite POF is given by, 

 

 𝑃𝑂𝐹𝑚 = 𝑃𝑂𝐹1𝑃𝑂𝐹2. . . . 𝑃𝑂𝐹𝑖 . (45) 

 

Eq. (45) is also the generic equation for multi-point POF. Here, we can determine localized resolution near flaw location. 

This resolution is measured in the part using RQI as opposed to calculating it, and is equivalent to Ulm in the above analysis. 

It can be measured as a line pair gap or wire size providing MTF value of 0.2 and is interpolated from MTF versus line 

pair frequency (line-pair/mm) response curve. There are limits on x-ray CT resolution. Given source size s and detector 

pixel size d, the best possible resolution R occurs at a particular value of geometric magnification ν and the quantities are 

given by, 

 𝜈𝑏𝑒𝑠𝑡 =  
𝑑

𝑠
+ 1,

1

𝑈𝑏𝑒𝑠𝑡
=

1

𝑠
+

1

𝑑
 (46) 

 

Thus, best possible resolution value is smaller than the smallest between the detector pixel size and source size. In 

microfocus x-ray CT, the detector pixel size may be an order larger than focal spot. In such situation, the resolution is 

approximately ~90% of source size. Resolution is controlled by detector size for low magnification and is given by,  

 

 𝜈 <  𝜈𝑏𝑒𝑠𝑡 ,  𝑈𝑚𝑎𝑥 =
𝑑

𝜈
 . (47) 

 

Resolution is controlled by source size for high magnification and is given by, 

 

 𝜈 ≥  𝜈𝑏𝑒𝑠𝑡 ,  𝑈𝑚𝑎𝑥 = (1 −
1

𝜈
) 𝑠. (48) 

 

In order to get above resolution, sufficient number of shots are needed. For 360 degree rotation in cone beam x-ray CT, 

recommended number of shots Nshots is given by, 

 

 𝑁𝑠ℎ𝑜𝑡𝑠 =
𝜋

2
𝑛𝑝𝑖𝑥𝑒𝑙 , (49) 

 

where, npixel = number of pixels, along an axis normal to rotation axis, needed to image the object in the scan. Although, 

this is a recommended value, part density variation, geometry, scattering, beam hardening, and distance from rotation axis 

would also affect the resolution. Choice of x-ray energy (kV) and filters are also important to make sure that signal response 

is not saturated or is insufficient to provide linear correlation of signal response with material thickness. Since x-ray CT 

has a volume pixel or voxel, depth resolution relates to contrast sensitivity. Normally, a cubical voxel is used with size 

based on Eq. (46). Contrast sensitivity value for x-ray CT is about same (i.e. 1% - 2%) as in DR, but the pixel size can be 

an order smaller than the contrast sensitivity as many shots are used in the x-ray CT image reconstruction. Since many 

factors affect resolution, it is recommended to measure resolution in the region of interest using RQI. With these changes, 
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above analysis is also applicable to x-ray CT. It is believed that reliability of x-ray NDE techniques for volumetric flaws 

can be assessed, to some extent, based on measurements on small number of flaws in all worst locations from detection 

point of view using the above analysis approach.  

 

Similarly, it is postulated that in other 2D imaging NDE methods, where linear model for transformed signal response and 

flaw size is applicable, the above analysis is also applicable. It is recommended to measure resolution using relevant 

resolution targets including RQI. Using same approach, reliability of flaw detection in other 2D imaging NDE methods 

can also be assessed, to some extent, based on measurements on small number of flaws in all worst locations. 

 

4. CONCLUSIONS 

Engineering analysis rule of thumb or cook-book conditions are given based on analysis of simulated data to assess 

reliability of an NDE technique. The approach assumes linear correlation between signal and flaw size. Noise is assumed 

to have constant standard deviation. Assessment of reliability of x-ray radiography NDE, including film, DR, CR and CT, 

is also considered. This approach is also applicable to assessment of reliability of flaw detection in other 2D imaging 

techniques. The analysis indicates that, multi-hit detection in 2D pixel cluster to image flaw is inherently more reliable 

than using just single-hit detection similar to that using only real time A-scan signal display. The approach uses ratio of 

standard deviation of noise as a factor to control conservatism in the assessment. Therefore, user may choose a different 

value than suggested here based on number of demonstration data points or based on similarity to other POD studies. 

Minimum 10 data points are recommended in signal correlation and noise measurements. The approach is conservative 

and is designed to provide a larger flaw size compared to the POD approach. Such NDE technique assessment engineering 

approach, although, not as rigorous as POD can be cost effective, if higher flaw size can be tolerated. Typically, this 

situation occurs for all quality control NDE inspections. For quality control, NDE technique needs to have consistent 

sensitivity but a90/95 flaw size is not estimated. The assessed flaw size in this analysis has high confidence that it is larger 

than the unknown true a90 due to conservative factors used in the analysis.  
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